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Abstract—By using the cross-section method, waveguide tran-
sitions containing parts where modes are in cutoff are analyzed.
The problem of infinite value of coupling coefficients for modes in
cutoff has been solved. Formulas for the calculation of reflection
coefficients are presented. The results have been compared with
the mode-matching and generalized scattering-matrix methods.

Index Terms—Cross-section method, coupling coeffi-
cients, cutoff modes, generalized scattering-matrix method,
mode-matching method.

I. INTRODUCTION

T HE cross-section method [1] is an analytical tool used
in the analysis and design of components required for

low-loss and highly efficient transmission of electromagnetic
waves in nonuniform waveguides. In spite of the fact that the
results of many papers published about different versions of this
method were applied to practical engineering problems, it has
not been completely investigated in detail and few numerical
examples are available for cutoff cross sections.

The initial ideas related to this method belong to Kisunko’s
book [2], but the first paper in western countries was the re-
port of Stevenson [3]. Nevertheless, the intensive application
of the method did not start until after the work of Schelkunoff
[4]. Intensive research was done in many countries for the de-
velopment of oversized waveguide communication systems in
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the millimeter-wave range where multimode concepts and cou-
pled-wave theory played a central role. Sporleder and Unger’s
book [5] concentrates mainly on the topics of tapers, transitions,
and couplers.

With some exceptions, this research has been abandoned
when the optical fibers appeared, but the results of the cou-
pled-wave theory are being used today for many applications
of integrated optics. An interesting review of coupled-wave
theory from the optical point-of-view is presented in [6] where
recent controversies are discussed.

On the other hand, in the eastern countries, the activities in the
use of the cross-section method have continued since the 1960’s,
as reported in [1] and the extensive references given there. In
[1], the most general formulation of the cross-section method
is presented together with many practical devices. Additional
recent eastern works are [7] and [8], which deal with transitions
of different cross-section waveguides.

The basic idea of this method consists of the fact that the
electromagnetic field in a nonuniform waveguide is represented
by means of a superposition of the mode fields corresponding to
more simple waveguides. It reduces a three-dimensional (3-D)
electrodynamic problem to the consideration of both the two-
dimensional (2-D) problem of the uniform waveguide modes
and the one-dimensional (1-D) problem of the solution of a set
of ordinary differential coupled-wave equations.

When the waveguide dimensions are large compared with the
wavelength, and the geometry of the problem includes bends
and other complex structures, a fully 3-D analysis employing
modern numerical methods (finite elements, finite-difference
time domains, etc.) is practically impossible, and the cross-sec-
tion method is the only feasible analysis technique. The kind
of sophisticated waveguide devices that are analyzed and de-
signed by means of the cross-section method range from highly
oversized mode converters and tapers, bends, twisted waveg-
uides, polarizers, and many others necessary for high-power
millimeter-wave applications, as shown in [1].

Moreover, the cross-section method (as the most general to
investigate the coupled-wave mechanisms in overmoded wave-
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guides) has been employed to evaluate the amplitudes of surface
waves scattered by inhomogeneous sections [9]. More recently,
the cross-section method and the concept of local modes (ref-
erence waveguide) has been referenced in modern open wave-
guide applications (see, e.g., [10]).

However, in the case of simple nonuniform waveguide struc-
tures having specific symmetry, the so-called mode-matching
and generalized scattering-matrix methods can be employed
without too high requirements for computer memory and
computing time even in oversized problems, and they will
be employed in this paper to verify the results derived by
the cross-section method. In the case of general nonuniform
oversized devices, the application of the mode-matching and
generalized scattering-matrix methods is very difficult.

The mode-matching and generalized scattering-matrix
methods are explained in detail in [11] and the extensive
references given there (see also the comments and references
given in [1]). In a few papers, the coupled-wave equations are
employed and compared with the mode-matching and gener-
alized scattering-matrix methods for the analysis of circular
tapers, as in [12] and [13]. Close agreement between both
methods and comparable computation times are demonstrated.
Some interesting analyses of waveguide transitions by using the
coupled-wave equations and the moment method are reported
in [14] and [15].

Recently, hybrid methods have been proposed for the analysis
and design of complex waveguide devices, as is described in
[16], but these hybrid methods have not been demonstrated in
highly oversized conditions.

Generally, if waveguide properties vary slowly, it is easy
to solve the coupled-wave equations and to obtain an ex-
plicit expression for the calculation of the waves scattered
on a nonuniform waveguide section using a method of the
Wentzel–Kramers–Brillouin (WKB) type, as described in
[17]–[19]. This method was introduced in 1912 by Lord
Rayleigh for the solution of wave propagation problems and
is based on the approximation of the wavenumber by the first
terms of a Taylor series. It can be considered as a high-fre-
quency (geometrical optics) method to obtain approximate
solutions. However, if a waveguide contains a cutoff cross
section, i.e., a cross section separating at a given frequency, the
propagating and cutoff regions of a given mode, the values of
the coupling coefficients are not small even for very slowly
varying parameters and solutions of the WKB type are not
valid. In this case, an equivalent boundary condition substi-
tuting the cutoff cross section is derived. This condition allows
us to obtain the solution of the coupled-wave equations far
away from the cutoff cross section.

A. Cross-Section Method

The basic idea of the cross-section method is that the elec-
tromagnetic fields in an arbitrary nonuniform waveguide cross
section are represented as a superposition of the waves of dif-
ferent modes propagating in the forward and backward direc-
tions along an auxiliary straight uniform waveguide of the same
cross section and with identical distribution ofand . The

Fig. 1. Schematic of a nonuniform waveguide of arbitrary lengthL containing
a cutoff cross section atz = ~z. The waveguide is axisymmetric with respect to
thez-axis.

coefficients of this superposition satisfy first-order ordinary
differential equations [1]

(1)

where is the direction of propagation, , , and
are, respectively, the amplitude and waveguide wavenumber of
the mode, are the coupling coefficients to themode, and
a negative value of denotes a backward propagating mode.

The coupling coefficients depend on the type of nonunifor-
mity under study. In general, every nonuniformity can be re-
duced to a combination of varying curvature, filling medium,
and cross section of the waveguide. For many years, there has
been some controversy about the exact formulation of coupling
coefficients and coupled-wave theory. One of the most extensive
and understandable papers is Doane’s [20], where the propa-
gation and coupling of modes is analyzed in smooth and cor-
rugated circular oversized waveguides for the design of very
high-power millimeter waveguides. Later, Li and Thumm [21],
[22] reported the exact formulation of the coupling coefficients
presented in Doane’s paper for the case of wall impedance and
diameter changes and curvature cases. All these results can be
derived from the very general expressions given in [1].

The general problem of the field derivation in a nonuniform
waveguide is reduced in such a way to the problem of the fields
in a uniform waveguide and to the solution of coupled-wave
ordinary differential equations.

II. EQUIVALENT BOUNDARY CONDITION FORMAIN MODES

In a cutoff cross section of the mode, located at
(see Fig. 1), the coupling coefficients are infinite for all
or nearly for all at , and the have large values near

. Some coefficients in the coupled wave equations (1) for
and are infinite at and, hence, solutions of the

WKB type are not valid. We will derive a boundary condition
for them, which is equivalent to the presence of a cutoff cross
section. Further, by applying this boundary condition, one could
use these equations and the solutions of the “generalized” WKB
type almost everywhere in the nonuniform waveguide.

The reflection of the incident mode at a cutoff cross section
means a strong coupling between forward and backward waves.
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Near the cutoff cross section, the decomposition of the total field
into forward and backward waves does not correspond to the
physical nature of the phenomena. Hence, it is inconvenient for
our calculations.

The amplitudes and can become infinite for some
cross sections. However, only the total fieldsand , and not
single terms of their expansions as a sum of the modal fields of
the reference waveguide, must have finite values.

To avoid these problems, let us employ instead of the wave
amplitudes and the variables and , related to them
by [1]

(2)

These variables satisfy the coupled-wave equations

(3a)

(3b)

There, the total field can be decomposed into TE and TM modes.
The coefficients in (3) have different forms for
these two kinds of modes.

To avoid infinite values of the coefficients of these equations,
we transform them into second-order differential equations and,
taking into account the field of an incident TE mode and the
terms of zeroth and first order of the perturbationonly, we
obtain

(4)

Here, the value has the order of the tangent between the-axis
and waveguide wall.

Standard methods like simple WKB, i.e., the methods of “ge-
ometrical optics,” can be applied to solve coupled-wave equa-
tions like (4) in the region, where is not small, more ex-
actly, in the region where . This condition is not
valid near the cutoff cross section, thus, we have to derive an-
other solution employing the Airy functions [18], [19]. To do
this, we transform (4) into

(5)

where the dot (i.e.,) denotes derivative with respect to a new
variable , given by

(6)

with

(7)

(8)

being the free-space wavenumber. In our case, ,
.

The general solution of this equation is given by a linear com-
bination of the Airy functions

(9)

where the ratio of the coefficients and can be determined
by substitution of this solution into the boundary condition

and equals

(10)

with

Here, denotes the value of the variable[see (6)] at .
This solution is valid in the same region where (7) can be

used, i.e., approximately for . This region is over-
lapped by the region where the condition is sat-
isfied, and it can be written in the form . Therefore, (4)
must approach the solutions obtained in the geometrical optics
(i.e., WKB) approximation for . Taking this into account,
we use (9) to establish a relationship betweenand on
the boundary of the region . This relationship can
be used as a “boundary condition” [see (13) and (14)] that al-
lows us to limit ourselves to a region far from the cutoff cross
section.

III. PHASE OFREFLECTION COEFFICIENTS AT ACUTOFF

CROSSSECTION

If the mode does not penetrate the narrow waveguide (see
Fig. 1), the absolute value of the reflection coefficient is equal
to one, and its phase, given by the ratio between and ,
satisfies in the region where geometric optics is applicable the
equation

(11)

providing .
The boundary condition of this equation is obtained taking

the asymptotic expression for large negative values ofof the
relation between and in the region where (11) is ap-
plicable. This relation is given by

(12)

Thus, the desired reflected phase, which gives the equivalent
boundary condition for (1), is given by

(13)

where

(14)

The physical meaning of the first term in (13) is obvious. It is
the phase acquired during the propagation to the cutoff cross
section and back, calculated in the geometric optics approxima-
tion. The value depends on the distance between the cutoff
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Fig. 2. Schematic showing the circular waveguide transition of arbitrary length
L analyzed to study the phase of the reflection coefficient at a cutoff cross
section. The waveguide is axisymmetric with respect to thez-axis, the input
radius is 4 mm and the cutoff cross-section radius for theTE mode isa .

cross section and the beginning of the narrow waveguide. It
gives an amendment to the phase of the reflected wave caused by
the narrow waveguide. Power does not propagate in the narrow
waveguide. Nevertheless, the field penetrates to the region
, being exponentially attenuated along the distance from the

cutoff cross section. Thus, the structure of the waveguide in this
region influences the phase of the reflected wave. According to
(10) and (14), the exact form of the function depends on
the type of mode and on the waveguide properties. For ,

and .
A similar technique is employed to determine the reflection

phase for TM modes, but we do not provide those derivations
here. Let us just note the reflection phase of TM modes is equal
to for .

In order to prove the validity of (13), a linear taper in a circular
waveguide where the mode goes below cutoff (see Fig. 2)
has been analyzed using two independent methods: the mode-
matching and generalized scattering-matrix methods and the nu-
merical integration of the coupled-wave (1) using the modifica-
tion proposed in [23] in order to avoid the singularities of the
coupling coefficients. In this last case, only one mode has been
taken into account, due to the numerical problems caused by the
evanescent modes (see [6] and [12]). In fact, this is the same case
whose approximate analytical solution is given by (13). The ob-
tained results can be seen in Fig. 3, where the plot of (14) is
compared with the numerical results. As can be seen, there is a
good agreement between the results of both numerical methods
and a little mismatch with the analytical solution. This mismatch
is of the order of the error committed by the asymptotic expres-
sion used to obtain (13). More detailed considerations show that
this mismatch decreases when the transition is smoother.

For a linear transition with , the evolution of the
phase of the reflected wave at the beginning of the waveguide,
i.e., at , is given in Fig. 4 as a function of , i.e., of the
distance from the origin to the cutoff cross section. The slope
of the transition remains constant so that the
effect is the same as if the cross section at is moved to

Fig. 3. Comparison between (14) (dashed line), numerical solution of the
coupled-wave equations taking into account 1 mode (dotted line), and the
mode-matching and generalized scattering-matrix method results (solid line).

Fig. 4. Phase of the reflection coefficient at the beginning of a nonuniform
waveguide containing a cutoff cross section versus the position of the cutoff
cross section (� = �0:0475, t = 2:57). Comparison between (12)
(dashed line), (13) (dotted line), and the mode-matching and generalized
scattering-matrix method results (solid line).

the right-hand side and the cutoff cross section is not moved.
As can be seen, the numerical results are in good agreement
with those predicted by the theory developed above; for small
values of (beginning of the waveguide close to), the
numerical results approach (12) and when increases, they
are practically identical to (13).

IV. EXTERNAL CRITICAL CROSSSECTION NEAR THEEND OF

THE WAVEGUIDE

Now let us determine the reflection coefficient in the case
when the mode penetrates the narrow waveguide. In this case,

is positive anywhere and, strictly speaking, there is no cutoff
cross section at all. However, the coupling coefficients near the
beginning of the narrow waveguide have large values. In such a
case, the reflection coefficient can be nearly equal to one. The
method developed above can be applied to this problem. One
should only let the cutoff cross section be situated outside the
taper, i.e., outside the nonuniform waveguide, as it is shown in
Fig. 5, thus, .
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Fig. 5. Schematic showing a transition of arbitrary lengthL where the
propagating mode does not go below cutoff. The waveguide is axisymmetric
with respect to thez-axis and the dotted contour indicates a fictitious waveguide
where the cutoff is located atz = ~z.

If the mode penetrates the narrow waveguide, i.e., the mode
does not go below cutoff, the reflection coefficient, if has a
large value, is equal to

(15)

For low and finite values of , following [1] a constant term,
determined in the same way as the boundary condition given
before, must be added. We obtain

(16)

where is the eigenvalue of the mode. The ratio has
been given in (10), but in contrast to the previous subsection,
has a negative value in this ratio.

To match these two expressions, one should find a second
term in the expansion of as a Taylor series of, where has
again the order of tangent between the-axis and waveguide
wall. In case of a circular conical taper (see Fig. 6) and the
mode, a more rigorous value of the reflection coefficient is given
by [1]

(17)
where is the th zero of the derivative of the zeroth-order
Bessel function and

where is the eigenvalue of the mode at . Ac-
cording to (10), the dependence of on differs for various
waveguides. The function versus is plotted in Fig. 7
for the mode in circular waveguide and the linear transi-
tion shown in Fig. 6, compared with the results obtained for the
same transition with the mode-matching and generalized scat-
tering-matrix methods. As can be seen, both results are in very
good agreement and, as it is predictable, when the length of the

Fig. 6. Schematic showing the circular waveguide transition of lengthL

analyzed to study the reflection coefficient close to a cutoff cross section (the
cutoff cross section is outside the waveguide). The waveguide is axisymmetric
with respect to thez-axis, the input radius is 4 mm and the cutoff cross-section
radius for theTE mode,a , is located in a fictitious waveguide outside the
device.

Fig. 7. Modulus of the reflection coefficient of the circular waveguideTE
mode close to a cutoff cross section. Comparison between the values given by
(17) (dashed line) and the mode-matching and generalized scattering-matrix
method results (solid line).

taper approaches, the value of the modulus of the reflection
coefficient given by (17) approaches one.

The dependence of on the frequency difference partici-
pating in (6) is the same for all modes. The reflection coefficient
for a fixed frequency difference is smaller for a smoother shape
of a taper near its narrow end. The region where decreases
from large to small values is narrowed for decreasing ,
where has the order of tangent between the-axis and the
wall at the end of the taper (see Fig. 8). For example, two dif-
ferent circular waveguide tapers with different angles between
their generating contour lines and the-axis have been studied
(see Fig. 9). If this angle is equal to 540 (i.e., ),
the reflection coefficient of the mode, , varies from 1
at to 0.5 at , for varying from 0
to 0.006, i.e., the operating frequency of the narrow waveguide
increases by 0.6% from its cutoff frequency. If the angle is two
times smaller, i.e., , the same value of
is achieved for an operating frequency increment of 0.4% only,
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Fig. 8. Schematic showing the circular waveguide transition analyzed to
study the frequency dependence of the modulus of the reflection coefficient as
a function of the slope of the transition. The waveguide is axisymmetric with
respect to thez-axis.

Fig. 9. Dependence of the modulus of the reflection coefficient close to a
cutoff cross section on the frequency difference with the cutoff frequency.
Comparison between the results given by (17) when the slopes of the linear
taper are� = �0:1 (solid line) and� = �0:05 (dashed line) and the
mode-matching and generalized scattering-matrix results (circles and crosses)
for the same slopes.

and the frequency increment by 0.6% causes, in this case, a de-
crease of to 0.4.

V. EQUIVALENT BOUNDARY CONDITION FOR

PARASITIC MODES

In the paragraphs above, the reflection and transmission in
the presence of a cutoff cross section of the propagating mode
has been studied. Now there is a cutoff cross section of an ex-
cited parasitic mode at , i.e., , but the incident
mode can propagate in the narrow waveguide (Fig. 10). Let us
determine the amplitude of the parasitic mode propagating in
the wide waveguide. For this problem, the solutions of (4) in
the whole nonuniform waveguide will be required. We will as-
sume in this section that the cutoff cross section is situated thus
far from the beginning of the narrow waveguide and that the par-
asitic mode field is practically equal to zero at the beginning of
the narrow waveguide.

Fig. 10. Schematic showing a cutoff cross section of the parasitic mode located
atz = ~z. The waveguide is axisymmetric with respect to thez-axis and the main
and parasitic modes are depicted as “1” and “2,” respectively.

According to (3a), far from the cutoff cross section, and
are related in the highest order terms ofby the following

equation:

(18)

To derive the algebraic relation between and , i.e., the
desired boundary condition, we express and through

and and substitute (18) in them. Considering that the
fundamental mode propagates without distortion, we obtain this
“equivalent boundary condition”

(19)

where can have any arbitrary value in the region of large values
of , i.e., far enough from the cutoff cross section andis pro-
portional to the Airy function in the vicinity of the cutoff cross
section. In the region of large values of, using the asymptotic
expansion of the Airy functions, we obtain that this function has
to be asymptotically defined at by

and by

The integrand contains such combinations of the coupling coef-
ficients that have no singular points in the whole area of integra-
tion and particularly at the cutoff cross section. An equivalent
boundary condition can be derived by that method for any other
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possible cases. If the modeis a TM mode, (3b) must be em-
ployed near the cutoff cross section.

VI. PARASITIC MODE COMPLEX AMPLITUDES

The field of a parasitic mode can be derived from the first
order coupled-wave (1) and from a boundary condition in the
form (19) equivalent to the existing cross section. The second
boundary condition is , i.e., there is no incident mode
of this kind.

Substituting the solution of these coupled wave equations for
an arbitrary outside of the cutoff area (and for ) into the
boundary condition (19), we derive , the desired ampli-
tude of a parasitic mode propagating into the wide waveguide
[1]

(20)

where can also have any value, but it cannot be near the cutoff
cross section. Indeed, the factors and in the last in-
tegral are identical to the corresponding factors in the first two
integrals. Hence, the sum of all three integrals is an invariant in
relation to .

This representation has a quite definite physical meaning. The
forward and backward propagating waves with indexare ex-
cited by the propagating mode along each nonuniform wave-
guide section from until the cross section participating
in (20). The superposition of all the parasitic modes propagating
backward occurs at the cross section and the result of that
superposition is identical to the second term in (20). The para-
sitic modes propagating forward are incident on the cutoff cross
section and reflected from it. They acquire the same additional
phase factor as if this wave were incident from the outside of
the nonuniform waveguide. In such a way, the first term appears
in (20). Thereafter, the last term in (20) results from the para-
sitic wave field excited near the cutoff cross section. In this area,
there is no sense to separate forward and backward propagating
waves. The parasitic mode is excited there in a more compli-
cated way.

The amplitudes of parasitic waves propagating forward are
usually larger than the backward propagating wave amplitudes.
Hence, if in (20) is chosen not very distant from the cutoff

Fig. 11. Schematic showing the analyzed transition to obtain the dependence
of the parasitic mode reflected power versus the slope of the transition(tg(�) =
�). The waveguide is axisymmetric with respect to thez-axis, the input radius is
8 mm, the cutoff cross-section radius for theTE modea is located atz = ~z
and the output radius is 3.5 mm.

cross section, the first term is the largest one and the third term
must be taken into account by exceptional circumstances only.
The proposed interpretation of (20) allows us to determine for
other possible problems the two main terms in the field of the
parasitic mode propagating into the wide waveguide without
solving (4) and without deriving an equivalent boundary con-
dition. For example, if the exciting wave is incident from the
narrow waveguide situated at the left-hand side of the cutoff
cross section, then the backward (and not forward) propagating
waves have an additional phase factor corresponding to the par-
asitic wave reflection from the cutoff cross section.

VII. CASE OF LINEAR TAPERS TO A CUTOFF

CROSSSECTION

We will apply the results above derived to waveguides where
is of the same order of magnitude for alland is stepwise

equal to zero at , i.e., to waveguides having a tilt of their
contour lines. After some manipulations on (20) (see [1]), we
obtain at

(21)

where the term corresponds to the influence of the neighbor-
hood of the intermediate cutoff cross section. This term is of
lower order than the first two and it can be neglected for all prob-
lems where accurate computations are not needed (see [1]).

The first two terms in (21) have a simple physical meaning.
The first term corresponds to the forward propagating waves re-
flected from the cutoff cross section and the second term to the
backward propagating waves. From this point-of-view, the inte-
gral in (21) can be explained as the influence of the neighbor-
hood of the intermediate cutoff cross section.
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Fig. 12. Reflected power in theTE mode when it goes below cutoff in the
transition shown in Fig. 11 versus the slope of the transition(tg(�) = �).
Comparison between the values given by (21) neglecting theI term (dashed
line) and the mode-matching and generalized scattering-matrix method results
(solid line).

In order to prove the validity of the results obtained with (21),
a linear transition, where the input mode is the mode and
the parasitic mode is the mode, has been studied at a fre-
quency of 60 GHz. As can be seen in Fig. 11, both the input and
output radii are fixed and the parameter that varies is, varying
the position of the cutoff cross section of the mode. For
our example, it means that . The dependence
of the reflected power on this value has been studied.

Fig. 12 shows the results obtained using the mode-matching
and generalized scattering-matrix methods compared to the
ones given by (21) neglecting theterm. As can be seen, when
the transition is not sufficiently smooth , the results
are quite different, but for smooth enough transitions, they are
in good agreement.

Thus, we have proven that the amplitude of a parasitic wave
for waveguides with a contour line tilt depends only on values
corresponding to the point of the tilt. As was mentioned above,
this result does not contradict the nonlocal excitation of parasitic
waves excited along the whole nonuniform waveguide.

VIII. C ONCLUSIONS

In a cutoff cross section of the propagating mode, the values
of the coupling coefficients are not small even for very slowly
varying parameters. In order to use the coupled-wave equations
and obtain solutions of the WKB type, we can use boundary con-
ditions equivalent to the presence of the cutoff cross sections.
The analytical expression of these boundary conditions in the
cases of main and parasitic mode cutoff cross section have been
tested using a mode-matching and generalized scattering-matrix
code and the numerical integration of the coupled-wave equa-
tions; good agreement between the results were obtained in both
cases.
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