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Abstract—By using the cross-section method, waveguide tran- the millimeter-wave range where multimode concepts and cou-
sitions containing parts where modes are in cutoff are analyzed. pled-wave theory played a central role. Sporleder and Unger’s

The problem of infinite value of coupling coefficients for modes in ; ; .
cutoff has been solved. Formulas for the calculation of reflection book 5] concentrates mainly on the topics of tapers, transitions,

coefficients are presented. The results have been compared with and _couplers. ) .
the mode-matching and generalized scattering-matrix methods. With some exceptions, this research has been abandoned

. . . when the optical fibers appeared, but the results of the cou-

Index Terms—Cross-section method, coupling coeffi- . .

cients, cutoff modes, generalized scattering-matrix method, Pléd-wave theory are being used today for many applications
mode-matching method. of integrated optics. An interesting review of coupled-wave
theory from the optical point-of-view is presented in [6] where
recent controversies are discussed.

On the other hand, in the eastern countries, the activities in the
HE cross-section method [1] is an analytical tool usedse of the cross-section method have continued since the 1960’s,
in the analysis and design of components required fes reported in [1] and the extensive references given there. In

low-loss and highly efficient transmission of electromagnetid], the most general formulation of the cross-section method
waves in nonuniform waveguides. In spite of the fact that the presented together with many practical devices. Additional
results of many papers published about different versions of thiggent eastern works are [7] and [8], which deal with transitions
method were applied to practical engineering problems, it hagdifferent cross-section waveguides.

not been completely investigated in detail and few numerical The basic idea of this method consists of the fact that the
examples are available for cutoff cross sections. electromagnetic field in a nonuniform waveguide is represented

The initial ideas related to this method belong to Kisunkosy means of a superposition of the mode fields corresponding to

book [2], but the first paper in western countries was the rgiore simple waveguides. It reduces a three-dimensional (3-D)
port of Stevenson [3]. Nevertheless, the intensive applicatietectrodynamic problem to the consideration of both the two-
of the method did not start until after the work of Schelkunoffimensional (2-D) problem of the uniform waveguide modes
[4]. Intensive research was done in many countries for the d&rd the one-dimensional (1-D) problem of the solution of a set
velopment of oversized waveguide communication systemsadhordinary differential coupled-wave equations.

When the waveguide dimensions are large compared with the

) . ) ) wavelength, and the geometry of the problem includes bends
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guides) has been employed to evaluate the amplitudes of surface alz) A
waves scattered by inhomogeneous sections [9]. More recently,
the cross-section method and the concept of local modes (ref-
erence waveguide) has been referenced in modern open wave-
guide applications (see, e.g., [10]).

However, in the case of simple nonuniform waveguide struc-
tures having specific symmetry, the so-called mode-matching
and generalized scattering-matrix methods can be employed
without too high requirements for computer memory and
computing time even in oversized problems, and they will
be employed in this paper to verify the results derived by
the cross-section method. In the case of general nonuniform

oversized devices, the application of the mode-matching agg 1. schematic of a nonuniform waveguide of arbitrary lerfgtiontaining

generalized scattering-matrix methods is very difficult. a cutoff cross section at= z. The waveguide is axisymmetric with respect to

The mode-matching and generalized scattering—matt‘ﬂ?z'ax's'

methods are explained in detail in [11] and the extensive

references given there (see also the comments and refereft gﬁcie_ntst of t_his superposition satisfy first-order ordinary
given in [1]). In a few papers, the coupled-wave equations a‘i’ erential equations [1]

V¥ o

2

z=L

z=0 z=

employed and compared with the mode-matching and gener- d o
alized scattering-matrix methods for the analysis of circular E-Pj +ith; P = Z Sim P 1)
tapers, as in [12] and [13]. Close agreement between both ) m=—00

methods and comparable computation times are demonstra\tﬁﬁerw is the direction of propagatiori,= /T, P;, andh;
Some interesting analyses of waveguide transitions by using & respectively, the amplitude and wéveguide’ wévenurﬁber of

poupled-wave equations and the moment method are reporﬁgg} mode, S, are the coupling coefficients to tenode, and
in [14] and [15]. . a negative value of denotes a backward propagating mode.
Recer!tly, hybrid methods havg been p.roposed.forthe a.nalys.'srhe coupling coefficients depend on the type of nonunifor-
and design of complex waveguide devices, as is descrlbe%ﬁy under study. In general, every nonuniformity can be re-
[16], but these hybrid methods have not been demonstrateqjiited to a combination of varying curvature, filling medium,
highly oversized conditions. _ . and cross section of the waveguide. For many years, there has
Generally, if waveguide properties vary slowly, it is easyeen some controversy about the exact formulation of coupling
to solve the coupled-wave equations and to obtain an &gefficients and coupled-wave theory. One of the most extensive
plicit expression for the (_:alculatu_)n of Fhe waves scattereghq understandable papers is Doane’s [20], where the propa-
on a nonuniform waveguide section using a method of WEition and coupling of modes is analyzed in smooth and cor-
Wentzel-Kramers—Brillouin (WKB) type, as described ingated circular oversized waveguides for the design of very
[17]-[19]. This method was introduced in 1912 by Lorgyigh-power millimeter waveguides. Later, Li and Thumm [21],
Rayleigh for the solution of wave propagation problems anga) reported the exact formulation of the coupling coefficients
is based on the approximation of the wavenumber by the fil§lesented in Doane’s paper for the case of wall impedance and
terms of a Taylor series. It can be considered as a high-figameter changes and curvature cases. All these results can be
quency (geometrical optics) method to obtain approximaifarived from the very general expressions given in [1].
solutions. However, if a waveguide contains a cutoff Cross The general problem of the field derivation in a nonuniform
section, i.e., a cross section separating at a given frequency,\{igeguide is reduced in such a way to the problem of the fields

propagating and cutoff regions of a given mode, the valuesgfa yniform waveguide and to the solution of coupled-wave
the coupling coefficients are not small even for very 3|°W|E5rdinary differential equations.

varying parameters and solutions of the WKB type are not

valid. In this case, an equivalent boundary condition substiq EQUIVALENT BOUNDARY CONDITION FOR MAIN MODES
tuting the cutoff cross section is derived. This condition allows )

us to obtain the solution of the coupled-wave equations far!n @ cutoff cross section of the moge located at: = 2

away from the cutoff cross section. (see Fig. 1), the couplirlg coefficients,,, are infinite for all
or nearly for allm atx = 2, and theS;,,, have large values near

z = z. Some coefficients in the coupled wave equations (1) for
A. Cross-Section Method P; and P_; are infinite atz = 2z and, hence, solutions of the

WKB type are not valid. We will derive a boundary condition

The basic idea of the cross-section method is that the eléar them, which is equivalent to the presence of a cutoff cross

tromagnetic fields in an arbitrary nonuniform waveguide crosection. Further, by applying this boundary condition, one could
section are represented as a superposition of the waves of dffe these equations and the solutions of the “generalized” WKB
ferent modes propagating in the forward and backward diragpe almost everywhere in the nonuniform waveguide.
tions along an auxiliary straight uniform waveguide of the same The reflection of the incident mode at a cutoff cross section
cross section and with identical distribution ofand ;. The means a strong coupling between forward and backward waves.
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Near the cutoff cross section, the decomposition of the total fielchere the ratio of the coefficienf§ and A/ can be determined
into forward and backward waves does not correspond to thye substitution of this solution into the boundary condition
physical nature of the phenomena. Hence, it is inconvenient Br ,,,(L) = 0 and equals

our calculations.

The amplitudes?; and P_; can become infinite for some w(tn) + (t1L/2 + B)u(tL)

cross sections. However, only the total fielsand H, and not % = - 1z (10)
single terms of their expansions as a sum of the modal fields of o(tr) + (tL + B)“(tL)
the reference waveguide, must have finite values. _
To avoid these problems, let us employ instead of the wavéth
amplitudes?; andP_, the variables); andR;, related to them 1
by F]_] J J QJ J B= _E(Smm - S—mm)Aiwg'
Q=Pj—P_;; R;=P,+P_. (2) Here,i. denotes the value of the variakilgsee (6)] at = L.
This solution is valid in the same region where (7) can be
These variables satisfy the coupled-wave equations used, i.e., approximately fdr?, < k2. This region is over-
o lapped by the region where the conditigr,, /22, < 1 is sat-
!4 ihe R — g . isfied, and it can be written in the forfy| >> 1. Therefore, (4)
NMARER g;l Qm(s}m S_Jm) (32) must approach the solutions obtaine'r(?|in the geometrical optics
00 (i.e., WKB) approximation foft| > 1. Taking this into account,
R +ih;Q; = Z R (Sjm + Sjm)- (3b) we use (9) to establish a relationship betwé&pand P_,,, on
m=1 the boundary of the regidn’,, /12,| < 1. This relationship can

There, the total field can be decomposed into TE and TM mod&§ Used as a “boundary condition” [see (13) and (14)] that al-
The coefficientsS;,,, + S_n, in (3) have different forms for Iows_ us to limit ourselves to a region far from the cutoff cross
these two kinds of modes. section.
To avoid infinite values of the coefficients of these equations,
we transform them into second-order differential equations and, /!l PHASE OF REFLECTION COEFFICIENTS AT A CUTOFF
taking into account the field of an incident TE mode and the CROSSSECTION
terms of zeroth and first order of the perturbatioronly, we  |f the mode does not penetrate the narrow waveguide (see
obtain Fig. 1), the absolute value of the reflection coefficient is equal
" 5 to one, and its phagk given by the ratio betweeR_,,, andP,,,,
Qm + hap @m = 0. ) satisfies in the region where geometric optics is applicable the

Here, the value has the order of the tangent betweenthaxis  €auation

and waveguide wall. §—2h, =0 (11)
Standard methods like simple WKB, i.e., the methods of “ge-
ometrical optics,” can be applied to solve coupled-wave equgroviding|A’,, /h2,| < 1.
tions like (4) in the region, wherg,,,| is not small, more ex-  The boundary condition of this equation is obtained taking
actly, in the region whergh,, /12| < 1. This condition is not the asymptotic expression for large negative valuesaffthe
valid near the cutoff cross section, thus, we have to derive agtation betweer’_,,, and P, in the region where (11) is ap-
other solution employing the Airy functions [18], [19]. To doplicable. This relation is given by
this, we transform (4) into
[+ (/2 + B)u] +(N/M) [0+ (/2 + B)v]
[4+(—tY/2 + B)u] +(N/M) [0+ (—t/2+B)v]
where the dot (i.e.;) denotes derivative with respect to a new (12)
variablet, ¢ = #(z) given by

an - thn =0 (5) exp(u?) =

Thus, the desired reflected phase, which gives the equivalent

t = AY3k(z — 3) (6) boundary condition for (1), is given by
with 0 s N ™
5(0) = 2/ ()= — & 4 60 = 2 — = 60 (13)
B2, = — KR A2(z - 2) @)
A2 — _ kig(hgn)/ ~ (8) Whel’e
2= o (NJM) —i
being k the free-space wavenumber. In our cage,> 2z, exp(ido) = (N/M)+i (14)

h(L)? < 0.

The general solution of this equation is given by a linear comfhe Physical meaning of the first term in (13) is obvious. It is
bination of the Airy functions the phase acquired during the propagation to the cutoff cross

section and back, calculated in the geometric optics approxima-
Qm =Mu+ Nv (9) tion. The valued, depends on the distance between the cutoff
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i=0 TER =L Fig. 3. Comparison between (14) (dashed line), numerical solution of the

coupled-wave equations taking into account 1 mode (dotted line), and the

Fig.2. Schematic showing the circular waveguide transition of arbitrary |eng%ode-matching and generalized scattering-matrix method results (solid line).

L analyzed to study the phase of the reflection coefficient at a cutoff cross
section. The waveguide is axisymmetric with respect tozttaxis, the input
radius is 4 mm and the cutoff cross-section radius forlfig,; mode isa.. 4 T T T T T T T

cross section and the beginning of the narrow waveguide.
gives an amendment to the phase of the reflected wave causec
the narrow waveguide. Power does not propagate in the narr
waveguide. Nevertheless, the field penetrates to the regien
%, being exponentially attenuated along the distance from tt
cutoff cross section. Thus, the structure of the waveguide in th
region influences the phase of the reflected wave. According-
(10) and (14), the exact form of the functiég(¢,,) depends on
the type of mode and on the waveguide propertieszFop 1,
6o — 0 and6(0) = =29, — (7r/2). - L 1 1 1 I | 1
A similar technique is employed to determine the reflectior - 1)
phase for TM modes, but we do not provide those derivations

here. Let us just note the reflection phase of TM modes is eqﬁg. 4. Phase of the reflection coefficient at the beginning of a nonuniform
waveguide containing a cutoff cross section versus the position of the cutoff

to (=29, + (7/2)) for ¢, > 1. cross sectiony = —0.0475, t; = 2.57). Comparison between (12)

In order to prove the validity of (13), a linear taper in a circulafdashed line), (13) (dotted line), and the mode-matching and generalized
waveguide where th&Eo; mode goes below cutoff (see Fig. 2)°cattering-matrix method results (solid fine).
has been analyzed using two independent methods: the mode-
matching and generalized scattering-matrix methods and the the right-hand side and the cutoff cross section is not moved.
merical integration of the coupled-wave (1) using the modificagxs can be seen, the numerical results are in good agreement
tion proposed in [23] in order to avoid the singularities of th@ith those predicted by the theory developed above; for small
coupling coefficients. In this last case, only one mode has begslues of|¢(0)| (beginning of the waveguide close £), the
taken into account, due to the numerical problems caused by thgnerical results approach (12) and wh#n)| increases, they
evanescent modes (see [6] and [12]). In fact, this is the same cagepractically identical to (13).
whose approximate analytical solution is given by (13). The ob-
tained result_s can be seen in Fig. 3, where the plot of (14).'R/. EXTERNAL CRITICAL CROSSSECTION NEAR THE END OF
compared with the numerical results. As can be seen, there is a

; THE WAVEGUIDE

good agreement between the results of both numerical methods
and a little mismatch with the analytical solution. This mismatch Now let us determine the reflection coefficient in the case
is of the order of the error committed by the asymptotic expreshen the mode penetrates the narrow waveguide. In this case,
sion used to obtain (13). More detailed considerations show t#d is positive anywhere and, strictly speaking, there is no cutoff
this mismatch decreases when the transition is smoother.  cross section at all. However, the coupling coefficients near the

For a linear transition witli;, = 2.57, the evolution of the beginning of the narrow waveguide have large values. In such a
phase of the reflected wave at the beginning of the waveguidese, the reflection coefficient can be nearly equal to one. The
i.e., atz = 0, is given in Fig. 4 as a function @f0), i.e., of the method developed above can be applied to this problem. One
distance from the origin to the cutoff cross section. The sloghould only let the cutoff cross section be situated outside the
of the transition remains constafit = —0.0475) so that the taper, i.e., outside the nonuniform waveguide, as it is shown in
effect is the same as if the cross sectiorr at 0 is moved to Fig. 5, thus,Z > L.

Phase of the Reflection Coefficient(rad)
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Fig. 5. Schematic showing a transition of arbitrary lendthwhere the
propagating mode does not go below cutoff. The waveguide is axisymmetric
with respect to the-axis and the dotted contour indicates a fictitious waveguide
where the cutoff is located at= Z.

=0 =1L 7=

¢l

Fig. 6. Schematic showing the circular waveguide transition of lerdgth
analyzed to study the reflection coefficient close to a cutoff cross section (the

If the mode penetrates the narrow Waveguide i.e. them ff cross section is outside the waveguide). The waveguide is axisymmetric
’ ' with respect to the-axis, the input radius is 4 mm and the cutoff cross-section

does not go _beIOW cutoft, the reflection coefficientif| has a radius for theTEq; mode,«., is located in a fictitious waveguide outside the
large value, is equal to device.

L0

L
p(O) = _/ S—rnrn eXp(—2’an)dZ. (15)
0

e )

For low and finite values dfty |, following [1] a constant term
determined in the same way as the boundary condition g|V¢ ok
before, must be added. We obtain

Reflection €

s o the

(N/M) i

N/ 1 P [~ 2i0m Fa)]  (16)

Po =

Mululu:

whereq,, is the eigenvalue of the mode. The ratioN/M has
been given in (10), but in contrast to the previous subse¢tjpn , , . , , )
has a negative value in this ratio. o™ o™ o™ e | 0

To match these two expressions, one should find a second
term in the expansion gfy as a Taylor series af, wherev has Fig. 7. Modulus of the reflection coefficient of the circular waveguid€o,
again the order of tangent befuween thexis and waveguid {145 258 8 0T foss sectn. Comoaoan betueer e ves e by
wall. In case of a circular conical taper (see Fig. 6) andltRg;  method results (solid line).

mode, a more rigorous value of the reflection coefficientis given

by [1] taper approaches the value of the modulus of the reflection
) ) coefficient given by (17) approaches one.
t {1 T/ <L b arctan@)) The dependence dfy| on the frequency difference partici-
g® 3g° pating in (6) is the same for all modes. The reflection coefficient
(17) for a fixed frequency difference is smaller for a smoother shape
whereyu,, is themth zero of the derivative of the zeroth-order . taper near its narrow end. The region whx decreases
Bessel function and from large to small values is narrowed for decreasird ),
R (0) whereuv( L) has the order of tangent between thaxis and the
m(0) wall at the end of the taper (see Fig. 8). For example, two dif-
ferent circular waveguide tapers with different angles between
where«,,,(0) is the eigenvalue of the mode at = = 0. Ac- their generating contour lines and thexis have been studied
cording to (10), the dependencemf on¢;, differs for various (see Fig. 9). If this angle is equal t64% (i.e.,v(L) = —0.1),
waveguides. The functiofpg| versus—i¢y, is plotted in Fig. 7 the reflection coefficient of th&#Eq; mode,|po|, varies from 1
for the TEg; mode in circular waveguide and the linear transiat¢ = 0 to 0.5 att = —0.086, for [f — f.]/f. varying from O
tion shown in Fig. 6, compared with the results obtained for thie 0.006, i.e., the operating frequency of the narrow waveguide
same transition with the mode-matching and generalized sdatreases by 0.6% from its cutoff frequency. If the angle is two
tering-matrix methods. As can be seen, both results are in véimes smaller, i.e (L) = —0.05, the same value dpo| = 0.5
good agreement and, as it is predictable, when the length of thechieved for an operating frequency increment of 0.4% only,

g:
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Fig. 8. Schematic showing the circular waveguide transition analyzed ké0. 10. Schematic showing a cutoff cross section of the parasitic mode located
study the frequency dependence of the modulus of the reflection coefficient?4s = *. The waveguide is axisymmetric with respect tohaxis and the main
a function of the slope of the transition. The waveguide is axisymmetric witnd parasitic modes are depicted as “1” and "2, respectively.
respect to the -axis.

According to (3a), far from the cutoff cross sectiép; and
100 T 1 ! T T T T T R; are related in the highest order termsuvaby the following
equation:

Q) +ih;R; _Qm( i S_jm). (18)

To derive the algebraic relation betweéh and P_, i.e., the
desired boundary condition, we expre%s and P_; through

- Q; and Q; and substitute (18) in them. C0n5|der|ng that the
fundamental mode propagates without distortion, we obtain this
“equivalent boundary condition”

, oo
Pj(z)exp <—’L <’yj -5 — Z))
0 0.01 0.02 0.03 0.04 0.08 0.06 0.07 0.08 0.09

F—f s
. —P_j(z exp((% Vi~ 4)>

Fig. 9. Dependence of the modulus of the reflection coefficient close to a hm () exp —L’Ym

cutoff cross section on the frequency difference with the cutoff frequency. /

Comparison between the results given by (17) when the slopes of the linear 7

taper arev = —0.1 (solid line) andv = —0.05 (dashed line) and the

mode-matching and generalized scattering-matrix results (circles and crosses) {S (Lh Vv ) +S (Lh vV _ V’) }d
for the same slopes. Jm —im

(19)

and the frequency increment by 0.

9 in thi . : . .
6% causes, in this case, a\gﬁerez can have any arbitrary value in the region of large values
crease ofpg| to 0.4.

of |¢|, i.e., far enough from the cutoff cross section &hi$ pro-
portional to the Airy function in the vicinity of the cutoff cross
section. In the region of large values|df, using the asymptotic
expansion of the Airy functions, we obtain that this function has
to be asymptotically defined at< # by

In the paragraphs above, the reflection and transmission in
the presence of a cutoff cross section of the propagating mode Viz) = h;(1/2) Sin(_% A+ %)

V. EQUIVALENT BOUNDARY CONDITION FOR
PARASITIC MODES

has been studied. Now there is a cutoff cross section of an ex-

cited parasitic mode at = %, i.e., h;(#) = 0, but the incident

mode can propagate in the narrow waveguide (Fig. 10). Let&dz > z by

determine the amplitude of the parasitic mode propagating in _)2)

the wide waveguide. For this problem, the solutions of (4) in V(z) = (ih;) exp ( i(y %))

the whole nonuniform waveguide will be required. We will as-

sume in this section that the cutoff cross section is situated thlse integrand contains such combinations of the coupling coef-
far from the beginning of the narrow waveguide and that the pdicients that have no singular points in the whole area of integra-
asitic mode field is practically equal to zero at the beginning ¢ibn and particularly at the cutoff cross section. An equivalent
the narrow waveguide. boundary condition can be derived by that method for any other
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possible cases. If the modeas a TM mode, (3b) must be em- a(z) A
ployed near the cutoff cross section.

VI. PARASITIC MODE COMPLEX AMPLITUDES A o

The field of a parasitic mode can be derived from the fire
order coupled-wave (1) and from a boundary condition in tt
form (19) equivalent to the existing cross section. The seco «,, = 8mm
boundary condition i$%; (0) = 0, i.e., there is no incident mode

Substituting the solution of these coupled wave equations 1 IE,, bere
an arbitraryz outside of the cutoff area (and fer< z) into the e e a,, =3.5mm

boundary condition (19), we deriv_;(0), the desired ampli- ‘
tude of a parasitic mode propagating into the wide wavegui

Loy

P_;(0)

TE,,

v

=0 =I z=

hm (0 (. T
= ( exp| —2¢( ¥ + — . . . " .
hj (0) 4 Fig. 11. Schematic showing the analyzed transition to obtain the dependence
of the parasitic mode reflected power versus the slope of the tran&itién) =
. v). The waveguide is axisymmetric with respect tothaxis, the input radius is
Sim J exp ( — i(’ym — ’yr))dz 8 mm, the cutoff cross-section radius for th&y, modeq. is located at = =
Jm ) J and the output radius is 3.5 mm.

hj . cross section, the first term is the largest one and the third term

= [ S=im P exp(—i(ym +7;))dz must be taken into account by exceptional circumstances only.
The proposed interpretation of (20) allows us to determine for

a - L exp(—im) other possible problems the two main terms in the field of the

—exp <—'L <'Yj + Z)) /Tm parasitic mode propagating into the wide waveguide without

solving (4) and without deriving an equivalent boundary con-
dition. For example, if the exciting wave is incident from the
narrow waveguide situated at the left-hand side of the cutoff
) , cross section, then the backward (and not forward) propagating
+S_jm (ih;V =V )} dz (20)  waves have an additional phase factor corresponding to the par-
asitic wave reflection from the cutoff cross section.

wherez can also have any value, but it cannot be near the cutoff
cross section. Indeed, the factdts,, andS_;,, in the last in- VIl. CASE OF LINEAR TAPERS TO A CUTOFF
tegral are identical to the corresponding factors in the first two CROSSSECTION

integrals. Hence, the sum of all three integrals is an invariant inyye will apply the results above derived to waveguides where
relation toz. _ _ o _ ~_wis of the same order of magnitude for alland is stepwise
This representation has a quite definite physical meaning. ngum to zero at = 0, i.e., to waveguides having a tilt of their

forward and backward propagating waves with indeare ex- contour lines. After some manipulations on (20) (see [1]), we
cited by the propagating. mode along each nonuniform wavegptain atz — 0

guide section fromx = 0 until the cross section participating
in (20). The superposition of all the parasitic modes propagating (0) = —i{ Sjm exp( —2i( 5, + [
7 B h’ h’] z=0 ’

X |Sim(ihsV +V)

backward occurs at the cross sectios 0 and the result of that m 4
superposition is identical to the second term in (20). The para- M S_jm
sitic modes propagating forward are incident on the cutoff cross T hon +hy | +1(21)

section and reflected from it. They acquire the same additional
phase factor as if this wave were incident from the outside where the/ term corresponds to the influence of the neighbor-
the nonuniform waveguide. In such a way, the first term appedrsod of the intermediate cutoff cross section. This term is of
in (20). Thereafter, the last term in (20) results from the parwer order than the first two and it can be neglected for all prob-
sitic wave field excited near the cutoff cross section. In this ardams where accurate computations are not needed (see [1]).
there is no sense to separate forward and backward propagatinghe first two terms in (21) have a simple physical meaning.
waves. The parasitic mode is excited there in a more complihe first term corresponds to the forward propagating waves re-
cated way. flected from the cutoff cross section and the second term to the
The amplitudes of parasitic waves propagating forward abackward propagating waves. From this point-of-view, the inte-
usually larger than the backward propagating wave amplitudesal I in (21) can be explained as the influence of the neighbor-
Hence, ifz in (20) is chosen not very distant from the cutofhood of the intermediate cutoff cross section.



644 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 4, APRIL 2001

[2] G. V. Kisunko, Electrodynamics of Hollow Systerfia Russian). St.

. Petersburg, Russia: VKAS, 1949.

st R [3] A. Stevenson, “General theory of electromagnetic horhisAppl. Phys.

’ vol. 22, pp. 1447-1454, 1951.

[4] S. A. Shelkunoff, “Conversion of Maxwell's equations into general-
ized telegraphist's equations3ell Syst. Tech. Jvol. 34, pp. 995-1043,
1955.

[5] F. Sporleder and H. G. Ungeatyaveguide Tapers, Transitions and Cou-
plers ser. IEE Electromagn. Waves. London, U.K.: IEE Press, 1979,
vol. 6.

[6] D. Hall, Ed.,Selected Papers on Coupled-Mode Theory in Guided-Wave
Optics ser. SPIE Milestone. Bellingham, WA: SPIE, 1993, vol. MS
84.

[7] V. N. Manuilov, V. G. Starov, and V. G. Pavel'ev, “Method of plane
cross-section in the theory of axisymmetrical structures, containing the
pieces of irregular coaxial and circular waveguiddsf: J. Infrared
Millim. Waves vol. 18, no. 12, pp. 2323-2333, 1997.

[8] V. N. Manuilov and V. G. Pavel'ev, “The wave scattering on the step of

v the circular oversized waveguide filled in with insulatdnt. J. Infrared
Millim. Waves vol. 18, no. 12, pp. 2335-2342, 1997.

Fig. 12. Reflected power in tHEE,, mode when it goes below cutoffinthe  [9] V. V. ShevchenkoContinuous Transitions in Open Waveguides—Intro-

transition shown in Fig. 11 versus the slope of the transifig{e) = v). duction to the Theory Boulder, CO: Golem Press, 1971.

Comparison between the values given by (21) neglecting trsm (dashed ~ [10] T.Rozziand M. MongiarddQpen Electromagnetic Waveguidssr. IEE

line) and the mode-matching and generalized scattering-matrix method results  Electromagn. Waves. London, U.K.: IEE Press, 1997, vol. 43.
(solid line). [11] T.Itoh, Ed.,Numerical Techniques for Microwave and Millimeter-Wave

Passive Structures New York: Wiley, 1989.
o . ) [12] H.Fligel and E. Kihn, “Computer-aided analysis and design of circular
In order to prove the validity of the results obtained with (21), waveguide tapers [EEE Trans. Microwave Theory Teghol. 32, pp.

TEO2 Retlected Power (%)
T

0 103 1 [(Sh} 02 6.5

a linear transition, where the input mode is tHigy; mode and 332-336, Feb. 1988, ) . . .

the parasitic mode is tHEE, mode. has been studied at a fre- [13] W. A. Huting and K. J. Webb, “Comparison of mode-matching and dif-
p 1t | 02 J > uat ° ferential equation technigues in the analysis of waveguide transitions,”

guency of 60 GHz. As can be seenin Fig. 11, both the inputand  IEEE Trans. Microwave Theory Techiol. 39, pp. 280-286, Feb. 1991.

output radii are fixed and the parameter that varids, i\sarying [14] ——, “Numerical analysis Iof rectangular and circullar waveguide ta-

" . pers,”IEEE Trans. Magn.vol. 25, pp. 3095-3097, July 1989.

the position Of_ the cutoff cross section of th,, mode. For [15] ——, “Numerical solution of the continuous waveguide transi-

our example, it means that= (8 — 3.5)/L. The dependence tion problem,” IEEE Trans. Microwave Theory Techvol. 37, pp.

of the reflected'Eq, power on this value has been studied. 1802-1808, Nov. 1989.

. . . . [16] F. Arndt, R. Beyer, J. M. Reiter, T. Sieverding, and T. Wolf, “Automated
Fig. 12 shows the results obtained using the mOde'matChm[g design of waveguide components using hybrid mode-matching/nu-

and generalized scattering-matrix methods compared to the merical EM building blocs in optimization-oriented CAD frame-

ones given by (21) neglecting theerm. As can be seen. when works—state-of-the-art and recent advanc&SEE Trans. Microwave
’ Theory Tech.vol. 45, pp. 747-760, May 1997.

the tra_nsnpn is not sufficiently smoottv > 0.2), _the results [17] P.Morse and H. Feshbad¥fiethods of Theoretical Physics New York:
are quite different, but for smooth enough transitions, they are ~ McGraw-Hill, 1953.
in good agreement. [18] A. Ishimaru,Electromagnetic Wave Propagation, Radiation, and Scat-

Th h h h litud f . tering. Englewood Cliffs, NJ: Prentice-Hall, 1991.
us, we have proven that the amplitude ot a parasitic wavg_g] W. C. Chew,Waves and Fields in Inhomogeneous Medigr. Electro-

for waveguides with a contour line tilt depends only on values  magn. Waves. Piscataway, NJ: IEEE Press, 1995.
corresponding to the point of the tilt. As was mentioned above(20] J: e ropadatiof. da”d f“‘]lde ‘é"“pg”g i corrugated and
. . o - smooth-wall circular waveguides,” ilmfrared and Millimeter Waves
this result does not contradict the nonlocal excitation of parasitic 3 'k "Button, Ed. New York: Academic, 1985, pt. part IV, vol. 13,

waves excited along the whole nonuniform waveguide. Millimeter Comp. Tech..
[21] H. Liand M. Thumm, “Mode conversion due to curvature in corrugated
waveguide,’Int. J. Electron, vol. 71, no. 5, pp. 333-347, 1991.
VIII. CONCLUSIONS [22] ——, “Mode coupling in corrugated waveguides with varying wall

. . impedance and diameter changds{’ J. Electron, vol. 71, no. 5, pp.
In a cutoff cross section of the propagating mode, the values 827-844, 1991.

of the coupling coefficients are not small even for very slowly[23] S. E. Tsimring and V. G. Pavelyev, “The theory of nonhomogeneous
Varying parameters_ In order to use the Coup|ed_wa\/e equations electromagnetic waveguides containing critical cross-sectidtadio
and obtain solutions of the WKB type, we can use boundary con- Eng. Electron. Physvol. 27, no. 6, pp. 41-44, 1982.

ditions equivalent to the presence of the cutoff cross sections.

The analytical expression of these boundary conditions in the

cases of main and parasitic mode cutoff cross section have b
tested using a mode-matching and generalized scattering-me
code and the numerical integration of the coupled-wave eqt

tions; good agreement between the results were obtained in k is currently working toward the Ph.D. degree in
cases. 1 ﬁ ; te!ec_ommunlcatlon engineering at the Universidad
| Publica de Navarra.

In 1997, he joined the Microwave and Mil-

REFERENCES limeter Waves Gr_ou_p, Univer_sida_d Publica (_1e

Navarra, where he is involved with high-power mil-

[1] B. Z. Katsenelenbaum, L. Mercader, M. Pereyaslavets, M. Sorolla, limeter-wave components. Since 1999, he has been
and M. Thumm,Theory of Nonuniform Waveguides—The Cross-Sewrith the European Space Research and Technology Center (ESTEC), ESA,
tion Method ser. IEE Electromagn. Waves. London, U.K.: IEE Presf\oordwijk, The Netherlands, where he is involved with photonic-bandgap
1998, vol. 44. structures and his applications in the field of antennas.

Ifigo Ederra was born in Isaba, Navarra, Spain,
in 1972. He received the M.Sc. degree in telecom-
munication engineering from the Universidad
Publica de Navarra, Navarra, Spain, in 1996, and




EDERRAet al. ANALYSIS OF MODE REFLECTION AND TRANSMISSION IN PRESENCE OF CUTOFF CROSS SECTION OF NONUNIFORM WAVEGUIDE 645

Mario Sorolla Ayza (S'82-M'83) was born in
Vinards, Spain, in 1958. He received the Telecom
munication Engineer degree from the Politechnica
University of Catalonia, Barcelona, Spain, in
1984, and the Ph.D. degree from the Politechnice
University of Madrid, Madrid, Spain, in 1991.

From 1986 to 1990, he designed very high-powe
millimeter waveguides for plasma heating in the Eu-
ratom-Ciemat Spanish Nuclear Fusion Experiment
From 1987 to 1988, he was an Invited Scientist a
the Institute of Plasma Research, Stuttgart University,

Boris Z. Katsenelenbaum (M’'96) was born in
Moscow, Russia, in 1919. He received the Physics
degree, and the Ph.D. and Dr.Sc. degrees from
Moscow State University, Moscow, Russia, in 1941,
1948, and 1960, respectively. His Ph.D. thesis was
entitled “The theory of dielectric waveguides” and
his Dr.Sc. thesis was entitled “The theory of irregular
waveguides.”

He became a Professor in 1965. He is currently
a Principal Scientist at the Institute of Radio-En-
gineering and Electronics, Russian Academy of

Stuttgart, Germany. He was then involved with microwave integrated circuiences, Moscow, Russia. He has authored approximately 110 papers
and monolithic microwave integrated circuits for satellite communications fand five books, including the textbooksigh Frequency Electrodynamics
private industries Tagra and Mier Comunicaciones. From 1984 to 1986, he vi®scow, Russia: Nauka, 1966) afneralized Method of Eigenoscillations

a Professor at the Politechnical University of Catalonia, Vilanova i la Geltrin Diffraction Theory(Berlin, Germany: Wiley-VCH, 1999)

Spain. From 1991 to 1993, he was a Professor at the Ramon Llull UniversityProf. Katsenelenbaum is a member of the Popov’'s Society of Radioengi-
Barcelona, Spain. Since 1993, he has been a Professor at the Universidad Pibéeang and Electronics.

de Navarra, Navarra, Spain. His research interest range from high-power mil-
limeter waveguide components and antennas, coupled wave theory and applica-
tions of electromagnetic crystals to microwave circuits and antennas.

Manfred Thumm (SM’94) was born in Magdeburg,
Germany, on August 5, 1943. He received the Dipl.
Phys. and Dr. rer. nat. degrees in physics from the
University of Tlbingen, Tubingen, Germany, in 1972
and 1976, respectively.

While with the University of Tubingen, he was
involved in the investigation of spin-dependent
nuclear forces in inelastic neutron scattering. From
1972 to 1975, he was a Doctoral Fellow of the
Studienstiftung des deutschen Volkes. In 1976, he
joined the Institute for Plasma Research, Electrical
Engineering Department, University of Stuttgart, Stuttgart, Germany, where
he was involved with RF production, RF heating, and diagnostics of toroidal
pinch plasmas for thermonuclear fusion research. From 1982 to 1990, his
research activities were mainly devoted to electromagnetic theory in the areas
of component development for the transmission of very high-power millimeter
waves through overmoded waveguides and of antenna structures for RF plasma
heating with microwaves. In June 1990, he became a Full Professor at the
Institut fur Hochstfrequenztechnik und Elektronik, Universitat Karlsruhe,
Karlsruhe, Germany, and Head of the Gyrotron Development and Microwave
Technology Division, Forschungszentrum Karlsruhe (FZK), Institute for
Technical Physics, Karlsruhe, Germany. Since April 1999, he has been the
Director of the Institute for Pulsed Power and Microwave Technology of the
FZK, where his current research projects are the development of high-power
gyrotrons, dielectric vacuum windows, transmission lines and antennas for
nuclear fusion plasma heating, and industrial materials processing.

Dr. Thumm is vice chairman of Chapter 8.6 (Vacuum Electronics and
Displays) of the Information Technical Society (ITE) of the German Verein
Deutscher Elektrotechniker (VDE) and a member of the German Physical
Society Deutsche Physikalische Gesellschaft (DPG). He was the recipient
of the 2000 Kenneth John Button Medal and Prize in recognition of his
contributions to the science of the electromagnetic spectrum.




	MTT023
	Return to Contents


